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Abstract: In this paper, passivity and passivation problems for event-triggered feedback
interconnected systems are addressed. We consider passivity in two event-triggered control
schemes based on the location of the event-triggered samplers: sampler at plant output and
sampler at controller output. For both schemes, we first derive the conditions to characterize
the level of passivity for the interconnected system using passivity indices. The event-triggering
condition proposed guarantees that these indices can be achieved. Then the passivation problem
is considered and passivation conditions are provided. The passivation conditions depend on the
passivity indices of the plant and controller and also the event-triggering condition, which reveals
the trade off between performance (passivity level) and communication resource utilization.
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1. INTRODUCTION

The notion of dissipativity, and its special case of passivity,
are characterizations of system input and output behavior
based on a generalized notion of energy. The ideas of
passivity first emerged from the phenomenon of dissipation
of energy across passive components in the circuit theory
field, see e.g. Anderson and Vongpanitlerd [1973]. Passive
systems can be viewed as systems that do not generate
energy, but only store or release the energy which was
provided. Dissipativity was introduced and formalized by
Willems [1972], and it is a generalized notion of passivity.
Dissipativity and passivity can be applied to the analysis
of chemical, mechanical, electromechanical and electrical
systems where the definition of energy has both clear phys-
ical meaning and concrete mathematical representation.
Over the past decades, dissipativity and passivity have
received constantly high attention by the systems and
control community with plenty of applications in theory
and practice, see e.g. Bao and Lee [2007], Khalil [2002],
Ebenbauer et al. [2009]. The significant benefit of passivity
is that when two passive systems are interconnected in
parallel or in feedback, the overall system is still passive.
Thus passivity is preserved when large-scales systems are
combined from components of passive subsystems. Such
compositional property is often used in large-scale network
design of nonlinear interconnected systems and related
topics, see e.g. Arcak [2007]. The advantage of using this
property is that one can always guarantee passivity of the
interconnected passive systems and thus stability of the
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whole system is guaranteed. Recent results in Antsaklis
et al. [2012, 2013] also showed its power in compositional
design of cyber-physical systems.

Although passivity theory has been applied successfully in
control design, this property is vulnerable to discretization,
quantization and other factors introduced by digital con-
trollers or communication channels in modern control sys-
tems. Results in the literature mainly considered passivity
analysis and passivation for a single dynamical system
under different network effects. Oishi [2010] pointed out
that passivity is not preserved under discretization and
then quantified how much passivity is lost under standard
discretization. For quantization effects, passivity analysis
and passivation of LTI systems with quantization were
treated as uncertainties described by integral quadratic
constraints in Xie et al. [1998]. Recent work by Zhu et al.
[2012] derived the conditions under which the passive
structure of an output strictly passive (OSP) nonlinear
system can be preserved under quantization. On the other
hand, it is also important to study passivity and passiva-
tion of interconnected systems, considering the advantages
in the analysis and design of large-scale interconnected
systems. As the extension to the well-known compositional
property of passivity, Zhu and Antsaklis [2014] considered
the passivity and passivation problems for feedback in-
terconnection of two input feed-forward output-feedback
(IF-OF) passive systems. Wang et al. [2012] considered
passivity analysis for discrete-time periodically controlled
nonlinear systems, where the system switches between
open and closed loop periodically.



Motivated by the work in Yu and Antsaklis [2013] and Zhu
and Antsaklis [2014], in this paper we consider the passiv-
ity and passivation problems for event-triggered feedback
interconnected systems. Instead of stability studied in Yu
and Antsaklis [2013], we focus on passivity properties
of the interconnected system. Based on the location of
event-triggered sampler implemented, we have two event-
triggered control schemes to consider: event-triggered sam-
pler at the plant output (Fig. 1) and event-triggered sam-
pler at the controller output (Fig. 2). For each control
scheme, the condition to characterize the level of passivity
for the interconnected system using passivity indices is
derived. Event-triggering conditions are proposed to guar-
antee that these indices can be achieved. For the passiva-
tion problem, the condition to render the interconnected
system passive is given. The condition depends on the
passivity indices of the plant and controller and the event-
triggering condition. Moreover, we discuss the trade off
between performance (passivity level) and resource uti-
lization by choosing appropriate passive controllers and
event-triggering conditions. The results presented in this
paper are extensions of the corresponding results in Zhu
and Antsaklis [2014], by considering, in addition, the effect
of event-triggered samplers.

The paper is organized as follows. In Section 2, we intro-
duce some background on dissipativity/passivity theory
and passivity indices. The passivity analysis and passiva-
tion problems are stated in Section 3. Section 4 consid-
ers the two problems for feedback interconnected systems
with event-triggered samplers. Based on the location of
the event-triggered samplers, two event-triggered control
schemes are considered, namely event-triggered sampler
at the plant output and event-triggered sampler at the
controller output. The conclusion is provided in Section 5.

2. PRELIMINARIES AND BACKGROUND

We first introduce some basic concepts of passive and
dissipative system theory. Consider the following nonlinear
system G, which is driven by an input u(t) and has an
output y(t)

G :

{
ẋ(t) = f (x(t), u(t))
y (t) = h (x(t), u(t))

(1)

where x (t) ∈ X ⊂ Rn, u (t) ∈ U ⊂ Rm and y (t) ∈ Y ⊂ Rp
are the state, input and output of the system respectively
and X , U and Y are the state, input and output spaces,
respectively.

The definition of a dissipative system is based on a
storage function (energy stored in the system) and a
supply function (externally supplied energy). The basic
idea behind dissipativity is that the increase of the stored
energy is bounded by the supplied energy.

Definition 1. (Ebenbauer et al. [2009]). System G is said
to be dissipative with respect to the supply rate ω(x, u, y),
if there exists a positive semi-definite storage function
V (x) such that the (integral) dissipation inequality

V (x(t1))− V (x(t0))≤
∫ t1

t0

ω(x(t), u(t), y(t))dt (2)

is satisfied for all t0, t1 with t0 ≤ t1 and all solutions
x = x(t), u = u(t), y = y(t), t ∈ [t0, t1]. If the storage

function is differentiable, then the integral dissipation
inequality (2) can be rewritten as

V̇ (x(t)) ≤ ω(x(t), u(t), y(t)),∀t (3)

As a special case of dissipativity, QSR-dissipativity was
proposed in Hill and Moylan [1976]. In this case the supply
rate is chosen to be

ω(u, y) = yTQy + 2yTSu+ uTRu (4)

where Q, S and R are matrices with appropriate di-
mensions. The relation between QSR-dissipativity and L2

stability has been shown in Hill and Moylan [1976].

Theorem 2. (Hill and Moylan [1976]). If SystemG is QSR-
dissipative with Q < 0, then it is L2 stable.

Definition 3. (Bao and Lee [2007]). System G with m = p
is passive if there exists a positive semi-definite storage
function V (x) such that the following inequality holds for
all t1, t2 ∈ [0,∞) such that

V (x(t2))− V (x(t1)) ≤
∫ t2

t1

u(t)T y(t)dt (5)

If the storage function is smooth, then the integral dissi-
pation inequality (5) can be rewritten as V̇ (x (t)) ≤ uT y.

In order to measure the excess and shortage of passivity,
passivity indices (or passivity levels) were introduced, see
e.g. Khalil [2002], Bao and Lee [2007]. The indices can be
used to render the system passive with feedback and feed-
forward compensation; they can also used to describe the
performance of passive systems.

Definition 4. (Khalil [2002]). A system is input feed-forward
output feedback passive (IF-OFP) if it is dissipative with
respect to the supply rate

ω(u, y) = uT y − νuTu− ρyT y, ∀t ≥ 0, (6)

for some ρ, ν ∈ R.

Based on Definition 4, we can denoted an IF-OFP system
by IF-OFP(ν, ρ). Definition 4 is often used in passivity
analysis, passivation and passivity-based control, see e.g.
Xia et al. [2013], Yu and Antsaklis [2013], Zhu et al.
[2012], Oishi [2010]. It can be seen that when ρ = ν = 0
an IF-OFP system is simply a passive system. one can
further have the definitions of input feed-forward (strictly)
passive, output feedback (strictly) passive and very strictly
passive.

(1) When ρ = 0 and ν 6= 0, the system is said to be input
feed-forward passive (IFP), denoted as IFP(ν). when
in addition ν > 0, the system is input feed-forward
strictly passive (ISP).

(2) When ρ 6= 0 and ν = 0, the system is said to be output
feedback passive (OFP), denoted as OFP(ρ). When in
addition ρ > 0, the system is output feedback strictly
passive (OSP).

(3) When ρ > 0 and ν > 0, the system is said to be very
strictly passive (VSP).

Note that positive ρ or ν means that the system has an
excess of passivity, such as ISP, OSP and VSP. If either
ρ or ν is negative, the system has a shortage of passivity
and thus is non-passive. When one of indices is zero and
the other is non-zero (i.e. IFO and OFP), ρ or ν is called
“passivity index”, defined as the largest value such that (6)
holds for ∀u and ∀t ≥ 0 (See Bao and Lee [2007]). When



Fig. 1. Feedback connection of two IF-OFP systems with
event-triggered sampler at plant output

both of indices are non-zero, the values of ρ and ν may not
be unique and are sometimes referred as “passivity levels”
(see Xia et al. [2013]). In this paper, we do not distinguish
between these two notions as long as there exist ρ and ν
such that (6) holds.

The valid domain of ρ and ν has been proposed in Matiakis
et al. [2006], Yu et al. [2013].

Lemma 5. (Yu et al. [2013]). The domain of ρ and ν in IF-
OFP system is Ω = Ω1 ∪Ω2 with Ω1 =

{
ρ, ν ∈ R|ρν < 1

4

}
and Ω2 =

{
ρ, ν ∈ R|ρν = 1

4 ; ρ > 0
}

.

In this paper, we adopt Definition 4 and assume that ρ
and ν are in the domain unless otherwise noted.

3. PROBLEM FORMULATION

We first consider feedback connection of two systems with
an event-triggered sampler at the plant output, given in
Fig. 1. We assume Gp is IF-OFP(νp, ρp) and Gc is IF-
OFP(νc, ρc) with known passivity indices. Instead of as-
suming continuous communication in the feedback loop
as in Zhu and Antsaklis [2014], an event-triggered feed-
back scheme is introduced. Event-triggered control has
been introduced for the possibility of reducing resources
usage (i.e., sampling rate, CPU time, network access fre-
quency), see e.g. Aström [2008], Donkers and Heemels
[2012], Heemels et al. [2008], Lemmon [2010], Otanez et al.
[2002], Mazo and Tabuada [2008], Tabuada [2007], Yu and
Antsaklis [2013]. The triggering mechanisms are referring
to the situation in which the control signals are kept con-
stant until the violation of a condition on certain signals
triggers the re-computation of the control signals. As in
Fig. 1, the new output information of Gp is sent to the
controller Gc only when the output novelty error ep = yp−
yp(tk) in the event-triggered sampler satisfies a triggering
condition. yp(tk) denotes the last output information sent
to the controller Gc at the event time tk. Note that Yu and
Antsaklis [2013] considered the same control scheme but
focused on deriving the triggering condition to guarantee
stability of the closed-loop system. In the present paper, we
focus on characterizing dissipativity/passivity properties of
the closed-loop system, which can be viewed as extensions
of the results in Yu and Antsaklis [2013] and Zhu and
Antsaklis [2014]. The main problems investigated in the
present paper are summarized as follows.

Fig. 2. Feedback connection of two IF-OFP systems with
event-triggered sampler at controller output

(1) Given the passivity indices of Gc and Gp, how can
we determine the passivity indices for the closed-
loop systems and accordingly, what is the event-
triggering condition to guarantee that these indices
can be achieved?

(2) For a non-passive plant Gp and a passive controller
Gc, what condition on the passivity indices of both
systems should be satisfied to render the closed-loop
system passive and accordingly, what is the event-
triggering condition to guarantee that the condition
can be satisfied?

In addition to feedback connection with an event-triggered
sampler of plant output, another similar scheme can be
considered as in Fig. 2, where the event-triggered sampler
is implemented in the output path of the controllerGc. The
new output information of Gc is sent to the plant Gp only
when the output novelty error ec = yc−yc(tk) in the event-
triggered sampler satisfies a triggering condition. yc(tk)
denotes the last output information sent to the controller
Gc at the event time tk. Analogously, same questions listed
above also need to be considered and answered.

4. MAIN RESULTS

In this section, we consider the passivity analysis and
passivation problems (two problems proposed in Section 3)
for event-triggered feedback interconnected systems using
passivity indices. Based on the location of event-triggered
sampler implemented, we have two event-triggered control
schemes to consider: sampler at the plant output and
sampler at the controller output. For both schemes, we first
derive the conditions to characterize the level of passivity
for the closed-loop system using passivity indices. Then
the passivation problem is considered and the passivation
conditions are provided. Some results are given without
proofs. One can refer to Zhu et al. [2013] for the complete
proofs.

4.1 Passivity Analysis and Passivation for Event-Trigerred
Sampler at Plant Output

We first consider the passivity analysis problem for the
feedback system with an event-triggered sampler of the
plant output (Fig. 1). Lemma 6 relates the interconnected
system to QSR-dissipative systems.



Lemma 6. Consider the feedback interconnection of two
IF-OF systems with the passivity indices νp, ρp and νc,
ρc respectively (Fig. 1). If the event time tk is explicitly
determined by the following triggering condition

‖ep(t)‖2 =
βp√

ν2c +mpβp + |νc|
‖yp(t)‖2 (7)

where mp = 1
4αp

+ |νc| − νc, αp > 0 and βp > 0, then the

interconnected system is QSR-dissipative (with respect to

the input w(t) =

[
w1(t)
w2(t)

]
and output y(t) =

[
yp(t)
yc(t)

]
),

satisfying the inequality

V̇ (t) ≤ y(t)TQy(t) + 2w(t)TSy(t) + w(t)TRw(t) (8)

where

Q =

[
− (ρp + νc − βp) I 0I

0I − (νp + ρc − αp) I

]
,

S =

 1

2
I νpI

−νcI
1

2
I

 ,
and

R =

[
−νpI 0I

0I − (νc − |νc|) I

]
.

Proof. See the proof of Lemma 8 in Zhu et al. [2013].

Remark 7. Although Lemma 6 does not explicitly charac-
terize passivity indices for the closed-loop system, it deter-
mines an event-triggering condition (7) which guarantees
that the closed-loop system is QSR-dissipative. After pre-
serving QSR-dissipativity of the closed-loop system, same
proof techniques used in Zhu and Antsaklis [2014] can
be applied to further explore passivity properties of the
system.

Remark 8. As pointed out in Theorem 2, the closed-loop
system (Fig. (1)) is L2 stable if Q < 0. It can be seen
that a sufficient condition for Q < 0 is νp + ρc > αp and
νc + ρp > βp, which is similar to the condition derived
in Yu and Antsaklis [2013]. Also note that the triggering
condition here is different from the condition in Yu and
Antsaklis [2013].

Remark 9. It can be seen from (7) that larger αp and βp
result in a larger triggering threshold. A large triggering
threshold implies lower sampling rate and thus lower
resources usage. Later we will show how these parameters
affect passivity of the system.

Next, Theorem 10 shows how to determine the passivity
indices for the feedback system with event-triggered sam-
pler of plant output.

Theorem 10. Consider the feedback interconnected sys-
tem in Fig. 1. Suppose the passivity indices νp, ρp, νc and
ρc are known and the triggering condition is determined
by (7). If we choose ε and δ such that

ε < min {νp, νc − |νc|}

δ ≤ min

{
ρc − αp −

ενp
νp − ε

, ρp − βp −
(|νc|+ ε)νc
νc − |νc| − ε

}
,

(9)
then the interconnected system has passivity indices ε and
δ satisfying

V̇ ≤ wT (t)y(t)− εwT (t)w(t)− δyT (t)y(t) (10)

where w(t) =

[
w1(t)
w2(t)

]
and y =

[
yp(t)
yc(t)

]
.

Proof. See the proof of Theorem 12 in Zhu et al. [2013].

Remark 11. (9) can be used to obtain an estimate of the
passivity indices for the closed-loop system, with respect

to the input w =

[
w1

w2

]
and output y =

[
yp
yc

]
. The

condition is similar to its counterpart in Zhu and Antsaklis
[2014]. Additionally, (9) quantifies the impact of triggering
condition on the passivity indices of the closed-loop system
using the parameters αp and βp.

Now we introduce the passivation problem for the feedback
system with event-triggered sampler of plant output. For
this problem, the goal is to passivate a non-passive plant
Gp using a passive controller Gc. Here passivity of the
interconnected system is defined on the input w1 and
output yp. We also assume that w2 is zero. One may
observe from Theorem 9 that passivity with respect to the
full input and output (i.e. input w and output y) may not
be guaranteed to be reinforced under feedback interconnec-
tion and event-triggering scheme. However, since we have
selected different inputs and outputs, the corresponding
passivity may change accordingly. Theorem 12 shows that
it is possible to guarantee passivity for the desired input
and output although passivity for full input and output
may not hold.

Theorem 12. Assume w2 = 0 and let the triggering con-
dition be determined by (7). The interconnected system
(Fig. (1)) is passive with respect to the input w1 and
output yp if the passivity indices satisfy the conditions

νp ≥ 0 (11)

ρc ≥ αp (12)

ρp + νc ≥ βp. (13)

Proof. See the proof of Theorem 14 in Zhu et al. [2013].

Remark 13. When the plant Gp is non-passive (i.e. ρp <
0), the closed-loop system can be rendered passive by
choosing a passive controller Gc with ρc ≥ αp and νc ≥
−ρp+βp. Compared with the passivation conditions in Zhu
and Antsaklis [2014], the conditions (11)-(13) imply that
one needs a passive controller with higher passivity indices
to passivate a non-passive plant for a triggering condition
with fixed αp and βp. On the other hand, the conditions
also give the upper bounds for αp and βp to guarantee
closed-loop passivity for a given plant and controller with
known passivity indices. The results provide certain flexi-
bility for designers by trade off between passivity level of
the controller and resource utilization.

Moreover, we can also obtain an estimate of passivity
indices for the passivated system, as shown in Corollary
14.

Corollary 14. Assume the triggering condition is deter-
mined by (7). Suppose that the conditions (11)-(13) are
satisfied and νp + ρc > αp. If we choose ε and δ such that 0 ≤ ε ≤ νp(ρc − αp)

νp + ρc − αp
0 ≤ δ ≤ νc + ρp − βp

, (14)



then the interconnected system (Fig. 1) has passivity
indices ε and δ satisfying

V̇ (t) ≤ wT1 (t)yp(t)− εwT1 (t)w1(t)− δyTp (t)yp(t) (15)

Proof. See the proof of Corollary 16 in Zhu et al. [2013].

Remark 15. Because of the conditions (11)-(13) and νp +
ρc > αp, the passivity indices ε and δ are upper bounded
by positive numbers. (14) provides a way to obtain the
desired passivity indices of the closed-loop system by
choosing a passive Gc with proper indices and a triggering
condition with proper αp and βp. As we point out in
Remark 13, the trade off between performance (passivity
level) and resource utilization can be considered. For
instance, if an OFP index given by δ = νc + ρp − βp is
desired, one can either choose a passive controller with
high νc and a triggering condition with low βp to conserve
more communication resources, or a triggering condition
with high βp and a passive controller with low νc to impose
less restrictions on the controller design.

4.2 Passivity Analysis and Passivation for Event-Trigerred
Sampler at Controller Output

For the feedback system with event-triggered sampler at
the controller output (Fig. 2), we can follow the same
rationale as for the feedback system with event-triggered
sampler at the plant output. We first consider the pas-
sivity analysis problem and then move to the passivation
problem.

Lemma 16. Consider two IF-OF systems with the pas-
sivity indices νp, ρp and νc, ρc respectively. If the event
time tk is explicitly determined by the following triggering
condition

‖ec(t)‖2 =
βc√

ν2p +mcβc + |νp|
‖yc(t)‖2 (16)

where mc = 1
4αc

+ |νp| − νp, αc > 0 and βc > 0,
then the interconnected system with the event-triggered
sampler (Fig. 2) is QSR-dissipative (with respect to the

input w(t) =

[
w1(t)
w2(t)

]
and output y(t) =

[
yp(t)
yc(t)

]
), which

satisfies the inequality

V̇ (t) ≤ y(t)TQy(t) + 2w(t)TSy(t) + w(t)TRw(t) (17)

where

Q =

[
− (ρp + νc − αc) I 0I

0I − (νp + ρc − βc) I

]
,

S =

 1

2
I νpI

−νcI
1

2
I

 ,
and

R =

[
− (νp − |νp|) I 0I

0I −νcI

]
.

Proof. See the proof on Lemma 18 in Zhu et al. [2013].

Theorem 17. Suppose that the passivity indices νp, ρp,
νc and ρc are known and the triggering condition is
determined by (16). If we choose ε and δ such that


ε < min {νp − |νp| , νc}

δ ≤ min

{
ρp − αc −

ενc
νc − ε

, ρc − βc −
(|νp|+ ε)νp
νp − |νp| − ε

}
,

(18)
the interconnected system with the event-triggered sam-
pler (Fig. 2) has the passivity indices ε and δ satisfying

V̇ ≤ wT (t)y(t)− εwT (t)w(t)− δyT (t)y(t) (19)

where w(t) =

[
w1(t)
w2(t)

]
and y =

[
yp(t)
yc(t)

]
.

Proof. See the proof of Theorem 19 in Zhu et al. [2013].

Remark 18. The results in Lemma 16 and Theorem 17 are
similar to their counterparts for the feedback system with
event-triggered sampler of plant output. However, note
that the triggering condition (16) now depends on αc, βc
and νp. Moreover, the matrices Q, S and R in (17) are
different from those in (8).

For the passivation problem, Theorem (19) gives the
conditions of rendering the interconnected system passive.

Theorem 19. Assume w2 = 0 and the triggering condition
is determined by (16). The interconnected system with the
event-triggered sampler (Fig. 2) is passive with respect to
the input w1 and output yp if the passivity indices satisfy
the conditions

νp = 0 (20)

ρc ≥ βc (21)

ρp + νc ≥ αc. (22)

Proof. See the proof of Theorem 21 in Zhu et al. [2013].

Remark 20. The condition (20) requires the plant Gp
to be a OFP system. Because of (20), the triggering
condition (16) can be further simplified as ‖ec(t)‖2 =
2
√
αcβc ‖yc(t)‖2 , which shows that the triggering condi-

tion is independent of the passivity indices of the plant
Gp and controller Gc. Therefore, one can first design a
desired triggering condition by choosing αc and βc, and
then design a passive controller satisfying the conditions
(20)-(22), or vice versa.

Corollary 21. Suppose that the conditions (20)-(22) are
satisfied. If we choose ε and δ such that{

ε = 0
0 ≤ δ ≤ ρp + νc − αc , (23)

the interconnected system with event-triggering (Fig. 2)
has the passivity indices ε and δ satisfying

V̇ (t) ≤ wT1 (t)yp(t)− εwT1 (t)w1(t)− δyTp (t)yp(t) (24)

Proof. See the proof of Corollary 23 in Zhu et al. [2013]

Remark 22. The condition (23) implies that the closed-
loop system is actually an OSP system with an OFP index
δ ≤ ρp + νc−αc. The ideas of passivity indices design and
passivity-resource trade off discussed in Remark (15) apply
likewise.

5. CONCLUSION

In this paper, we considered the problems of passivity anal-
ysis and passivation using passivity indices for intercon-
nected event-triggered feedback systems. The present work



extended our previous work in Zhu and Antsaklis [2014]
for feedback interconnected systems assuming continuous
communication in the feedback loop. We considered two
event-triggered control schemes: an event-triggered sam-
pler at the plant output and an event-triggered sampler
at the controller output. Using the passivity indices of the
plant and controller, the conditions to determine the pas-
sivity indices of the interconnected system were given, un-
der a proposed event-triggering condition. We also showed
the passivation conditions in terms of the passivity indices
of the plant and controller and the triggering condition.
The trade off between passivity and communication re-
sources utilization was also discussed. Simulation results
can be found in Zhu et al. [2013].
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